All nil 3-manifolds are cusps of complex hyperbolic 2-orbifolds

نویسنده

  • D. B. McReynolds
چکیده

In this paper, we prove that every closed nil 3-manifold is diffeomorphic to a cusp cross-section of a finite volume complex hyperbolic 2-orbifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All flat manifolds are cusps of hyperbolic orbifolds

We show that all closed flat n-manifolds are diffeomorphic to a cusp cross-section in a finite volume hyperbolic n + 1-orbifold.

متن کامل

Peripheral separability and cusps of arithmetic hyperbolic orbifolds

For X = R , C , or H , it is well known that cusp cross-sections of finite volume X –hyperbolic (n + 1)–orbifolds are flat n–orbifolds or almost flat orbifolds modelled on the (2n + 1)–dimensional Heisenberg group N2n+1 or the (4n + 3)–dimensional quaternionic Heisenberg group N4n+3(H). We give a necessary and sufficient condition for such manifolds to be diffeomorphic to a cusp cross-section o...

متن کامل

Volumes of Picard modular surfaces

We show that the conjectural cusped complex hyperbolic 2-orbifolds of minimal volume are the two smallest arithmetic complex hyperbolic 2orbifolds. We then show that every arithmetic cusped complex hyperbolic 2-manifold of minimal volume covers one of these two orbifolds. We also give all minimal volume manifolds that simultaneously cover both minimal orbifolds.

متن کامل

Cusps of Minimal Non-compact Arithmetic Hyperbolic 3-orbifolds

In this paper we count the number of cusps of minimal non-compact finite volume arithmetic hyperbolic 3-orbifolds. We show that for each N , the orbifolds of this kind which have exactly N cusps lie in a finite set of commensurability classes, but either an empty or an infinite number of isometry classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003